乐知付加密服务平台

如果你有资源, 平台可以帮你实现内容变现, 无需搭建知识付费服务平台。

点击访问官方网站 https://lezhifu.cc

扫码关注公众号 乐知付加密服务平台-微信公众号
Zookeeper一致性共识算法ZAB详解 | chenzuoli's blog

Zookeeper一致性共识算法ZAB详解

      Zookeeper中一致性共识算法ZAB(Zookeeper Atomic Broadcast protocol)改进了Raft算法,提供一致性的元数据存储,多用在分布式系统中共享元数据信息。下面来看看具体细节。

1.ZAB介绍

      ZAB协议全称就是ZooKeeper Atomic Broadcast protocol,是ZooKeeper用来实现一致性的算法,分成如下4个阶段。

先来解释下部分名词:

  • electionEpoch:每执行一次leader选举,electionEpoch就会自增,用来标记leader选举的轮次
  • peerEpoch:每次leader选举完成之后,都会选举出一个新的peerEpoch,用来标记事务请求所属的轮次
  • zxid:事务请求的唯一标记,由leader服务器负责进行分配。由2部分构成,高32位是上述的peerEpoch,低32位是请求的计数,从0开始。所以由zxid我们就可以知道该请求是哪个轮次的,并且是该轮次的第几个请求。
  • lastProcessedZxid:最后一次commit的事务请求的zxid

Leader election:

leader选举过程,electionEpoch自增,在选举的时候lastProcessedZxid越大,越有可能成为leader

Discovery:

第一:leader收集follower的lastProcessedZxid,这个主要用来通过和leader的lastProcessedZxid对比来确认follower需要同步的数据范围
第二:选举出一个新的peerEpoch,主要用于防止旧的leader来进行提交操作(旧leader向follower发送命令的时候,follower发现zxid所在的peerEpoch比现在的小,则直接拒绝,防止出现不一致性)

Synchronization:

follower中的事务日志和leader保持一致的过程,就是依据follower和leader之间的lastProcessedZxid进行,follower多的话则删除掉多余部分,follower少的话则补充,一旦对应不上则follower删除掉对不上的zxid及其之后的部分然后再从leader同步该部分之后的数据

Broadcast:

正常处理客户端请求的过程。leader针对客户端的事务请求,然后提出一个议案,发给所有的follower,一旦过半的follower回复OK的话,leader就可以将该议案进行提交了,向所有follower发送提交该议案的请求,leader同时返回OK响应给客户端

      上面简单的描述了上述4个过程,这4个过程的详细描述在zab的paper中可以找到,但是我看了之后基本和zab的源码实现上相差有点大,这里就不再提zab paper对上述4个过程的描述了,下面会详细的说明ZooKeeper源码中是具体怎么来实现的

2.ZAB协议源码实现

先看下ZooKeeper整体的实现情况,如下图所示

ZAB_protocol_realize

上述实现中Recovery Phase包含了ZAB协议中的Discovery和Synchronization。

2.1 重要的数据介绍

加上前面已经介绍的几个名词

  • long lastProcessedZxid:
    最后一次commit的事务请求的zxid
  • LinkedListcommittedLog、long maxCommittedLog、long minCommittedLog:
    ZooKeeper会保存最近一段时间内执行的事务请求议案,个数限制默认为500个议案。上述committedLog就是用来保存议案的列表,上述maxCommittedLog表示最大议案的zxid,minCommittedLog表示committedLog中最小议案的zxid。
  • ConcurrentMap<Long, Proposal> outstandingProposals
    Leader拥有的属性,每当提出一个议案,都会将该议案存放至outstandingProposals,一旦议案被过半认同了,就要提交该议案,则从outstandingProposals中删除该议案
  • ConcurrentLinkedQueuetoBeApplied
    Leader拥有的属性,每当准备提交一个议案,就会将该议案存放至该列表中,一旦议案应用到ZooKeeper的内存树中了,然后就可以将该议案从toBeApplied中删除

对于上述几个参数,整个Broadcast的处理过程可以描述为:

  • leader针对客户端的事务请求(leader为该请求分配了zxid),创建出一个议案,并将zxid和该议案存放至leader的outstandingProposals中
  • leader开始向所有的follower发送该议案,如果过半的follower回复OK的话,则leader认为可以提交该议案,则将该议案从outstandingProposals中删除,然后存放到toBeApplied中
  • leader对该议案进行提交,会向所有的follower发送提交该议案的命令,leader自己也开始执行提交过程,会将该请求的内容应用到ZooKeeper的内存树中,然后更新lastProcessedZxid为该请求的zxid,同时将该请求的议案存放到上述committedLog,同时更新maxCommittedLog和minCommittedLog
  • leader就开始向客户端进行回复,然后就会将该议案从toBeApplied中删除

2.2 Fast Leader Election

leader选举过程要关注的要点:

  • 所有机器刚启动时进行leader选举过程
  • 如果leader选举完成,刚启动起来的server怎么识别到leader选举已完成

投票过程有3个重要的数据:

  • ServerState
    目前ZooKeeper机器所处的状态有4种,分别是

    • LOOKING:进入leader选举状态
    • FOLLOWING:leader选举结束,进入follower状态
    • LEADING:leader选举结束,进入leader状态
    • OBSERVING:处于观察者状态
  • HashMap<Long, Vote> recvset
    用于收集LOOKING、FOLLOWING、LEADING状态下的server的投票

  • HashMap<Long, Vote> outofelection
    用于收集FOLLOWING、LEADING状态下的server的投票(能够收集到这种状态下的投票,说明leader选举已经完成)

下面就来详细说明这个过程:

1. serverA首先将electionEpoch自增,然后为自己投票

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;serverA会首先从快照日志和事务日志中加载数据,就可以得到本机器的内存树数据,以及lastProcessedZxid(这一部分后面再详细说明)

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;初始投票Vote的内容:

  • proposedLeader:ZooKeeper Server中的myid值,初始为本机器的id
  • proposedZxid:最大事务zxid,初始为本机器的lastProcessedZxid
  • proposedEpoch:peerEpoch值,由上述的lastProcessedZxid的高32得到
  • 然后该serverA向其他所有server发送通知,通知内容就是上述投票信息和electionEpoch信息

2. serverB接收到上述通知,然后进行投票PK

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;如果serverB收到的通知中的electionEpoch比自己的大,则serverB更新自己的electionEpoch为serverA的electionEpoch

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;如果该serverB收到的通知中的electionEpoch比自己的小,则serverB向serverA发送一个通知,将serverB自己的投票以及electionEpoch发送给serverA,serverA收到后就会更新自己的electionEpoch

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;在electionEpoch达成一致后,就开始进行投票之间的pk,规则如下:

1
2
3
4
5
6
7
8
9
10
11
/*
* We return true if one of the following three cases hold:
* 1- New epoch is higher
* 2- New epoch is the same as current epoch, but new zxid is higher
* 3- New epoch is the same as current epoch, new zxid is the same
* as current zxid, but server id is higher.
*/

return ((newEpoch > curEpoch) ||
((newEpoch == curEpoch) &&
((newZxid > curZxid) || ((newZxid == curZxid) && (newId > curId)))));

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;就是优先比较proposedEpoch,然后优先比较proposedZxid,最后优先比较proposedLeader

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;pk完毕后,如果本机器投票被pk掉,则更新投票信息为对方投票信息,同时重新发送该投票信息给所有的server。

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;如果本机器投票没有被pk掉,则看下面的过半判断过程

3. 根据server的状态来判定leader

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;如果当前发来的投票的server的状态是LOOKING状态,则只需要判断本机器的投票是否在recvset中过半了,如果过半了则说明leader选举就算成功了,如果当前server的id等于上述过半投票的proposedLeader,则说明自己将成为了leader,否则自己将成为了follower

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;如果当前发来的投票的server的状态是FOLLOWING、LEADING状态,则说明leader选举过程已经完成了,则发过来的投票就是leader的信息,这里就需要判断发过来的投票是否在recvset或者outofelection中过半了

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;同时还要检查leader是否给自己发送过投票信息,从投票信息中确认该leader是不是LEADING状态。这个解释如下:

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;因为目前leader和follower都是各自检测是否进入leader选举过程。leader检测到未过半的server的ping回复,则leader会进入LOOKING状态,但是follower有自己的检测,感知这一事件,还需要一定时间,在此期间,如果其他server加入到该集群,可能会收到其他follower的过半的对之前leader的投票,但是此时该leader已经不处于LEADING状态了,所以需要这么一个检查来排除这种情况。

2.3 Recovery Phase

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;一旦leader选举完成,就开始进入恢复阶段,就是follower要同步leader上的数据信息

1 通信初始化

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;leader会创建一个ServerSocket,接收follower的连接,leader会为每一个连接会用一个LearnerHandler线程来进行服务

2 重新为peerEpoch选举出一个新的peerEpoch

f&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ollower会向leader发送一个Leader.FOLLOWERINFO信息,包含自己的peerEpoch信息

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;leader的LearnerHandler会获取到上述peerEpoch信息,leader从中选出一个最大的peerEpoch,然后加1作为新的peerEpoch。

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;然后leader的所有LearnerHandler会向各自的follower发送一个Leader.LEADERINFO信息,包含上述新的peerEpoch

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;follower会使用上述peerEpoch来更新自己的peerEpoch,同时将自己的lastProcessedZxid发给leader

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;leader的所有LearnerHandler会记录上述各自follower的lastProcessedZxid,然后根据这个lastProcessedZxid和leader的lastProcessedZxid之间的差异进行同步

3 已经处理的事务议案的同步

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;判断LearnerHandler中的lastProcessedZxid是否在minCommittedLog和maxCommittedLog之间

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;LearnerHandler中的lastProcessedZxid和leader的lastProcessedZxid一致,则说明已经保持同步了

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;如果lastProcessedZxid在minCommittedLog和maxCommittedLog之间

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;从lastProcessedZxid开始到maxCommittedLog结束的这部分议案,重新发送给该LearnerHandler对应的follower,同时发送对应议案的commit命令

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;上述可能存在一个问题:即lastProcessedZxid虽然在他们之间,但是并没有找到lastProcessedZxid对应的议案,即这个zxid是leader所没有的,此时的策略就是完全按照leader来同步,删除该follower这一部分的事务日志,然后重新发送这一部分的议案,并提交这些议案

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;如果lastProcessedZxid大于maxCommittedLog

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;则删除该follower大于部分的事务日志

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;如果lastProcessedZxid小于minCommittedLog

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;则直接采用快照的方式来恢复

4 未处理的事务议案的同步

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;LearnerHandler还会从leader的toBeApplied数据中将大于该LearnerHandler中的lastProcessedZxid的议案进行发送和提交(toBeApplied是已经被确认为提交的)

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;LearnerHandler还会从leader的outstandingProposals中大于该LearnerHandler中的lastProcessedZxid的议案进行发送,但是不提交(outstandingProposals是还没被被确认为提交的)

5 将LearnerHandler加入到正式follower列表中

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;意味着该LearnerHandler正式接受请求。即此时leader可能正在处理客户端请求,leader针对该请求发出一个议案,然后对该正式follower列表才会进行执行发送工作。这里有一个地方就是:

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;上述我们在比较lastProcessedZxid和minCommittedLog和maxCommittedLog差异的时候,必须要获取leader内存数据的读锁,即在此期间不能执行修改操作,当欠缺的数据包已经补上之后(先放置在一个队列中,异步发送),才能加入到正式的follower列表,否则就会出现顺序错乱的问题

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;同时也说明了,一旦一个follower在和leader进行同步的过程(这个同步过程仅仅是确认要发送的议案,先放置到队列中即可等待异步发送,并不是说必须要发送过去),该leader是暂时阻塞一切写操作的。

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;对于快照方式的同步,则是直接同步写入的,写入期间对数据的改动会放在上述队列中的,然后当同步写入完成之后,再启动对该队列的异步写入。

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;上述的要理解的关键点就是:既要不能漏掉,又要保证顺序

6 LearnerHandler发送Leader.NEWLEADER以及Leader.UPTODATE命令

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;该命令是在同步结束之后发的,follower收到该命令之后会执行一次版本快照等初始化操作,如果收到该命令的ACK则说明follower都已经完成同步了并完成了初始化

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;leader开始进入心跳检测过程,不断向follower发送心跳命令,不断检是否有过半机器进行了心跳回复,如果没有过半,则执行关闭操作,开始进入leader选举状态

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;LearnerHandler向对应的follower发送Leader.UPTODATE,follower接收到之后,开始和leader进入Broadcast处理过程

2.4 Broadcast Phase

前面其实已经说过了,参见2.1中的内容

3 特殊情况的注意点

3.1 事务日志和快照日志的持久化和恢复

先来看看持久化过程:

  • Broadcast过程的持久化
    leader针对每次事务请求都会生成一个议案,然后向所有的follower发送该议案
    follower接收到该议案后,所做的操作就是将该议案记录到事务日志中,每当记满100000个(默认),则事务日志执行flush操作,同时开启一个新的文件来记录事务日志
    同时会执行内存树的快照,snapshot.[lastProcessedZxid]作为文件名创建一个新文件,快照内容保存到该文件中

  • leader shutdown过程的持久化
    一旦leader过半的心跳检测失败,则执行shutdown方法,在该shutdown中会对事务日志进行flush操作

再来说说恢复:

  • 事务快照的恢复
    第一:会在事务快照文件目录下找到最近的100个快照文件,并排序,最新的在前
    第二:对上述快照文件依次进行恢复和验证,一旦验证成功则退出,否则利用下一个快照文件进行恢复。恢复完成更新最新的lastProcessedZxid

  • 事务日志的恢复
    第一:从事务日志文件目录下找到zxid大于等于上述lastProcessedZxid的事务日志
    第二:然后对上述事务日志进行遍历,应用到ZooKeeper的内存树中,同时更新lastProcessedZxid
    第三:同时将上述事务日志存储到committedLog中,并更新maxCommittedLog、minCommittedLog

由此我们可以看到,在初始化恢复的时候,是会将所有最新的事务日志作为已经commit的事务来处理的

也就是说这里面可能会有部分事务日志还没真实提交,而这里全部当做已提交来处理。这个处理简单粗暴了一些,而raft对老数据的恢复则控制的更加严谨一些。

3.2 follower挂了之后又重启的恢复过程

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;一旦leader挂了,上述leader的2个集合

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ConcurrentMap<Long, Proposal> outstandingProposals
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ConcurrentLinkedQueuetoBeApplied
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;就无效了。他们并不在leader恢复的时候起作用,而是在系统正常执行,而某个follower挂了又恢复的时候起作用。
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;我们可以看到在上述2.3的恢复过程中,会首先进行快照日志和事务日志的恢复,然后再补充leader的上述2个数据中的内容。

3.3 同步follower失败的情况

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;目前leader和follower之间的同步是通过BIO方式来进行的,一旦该链路出现异常则会关闭该链路,重新与leader建立连接,重新同步最新的数据

3.4 对client端是否一致

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;客户端收到OK回复,会不会丢失数据?
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;客户端没有收到OK回复,会不会多存储数据?
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;客户端如果收到OK回复,说明已经过半复制了,则在leader选举中肯定会包含该请求对应的事务日志,则不会丢失该数据

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;客户端连接的leader或者follower挂了,客户端没有收到OK回复,目前是可能丢失也可能没丢失,因为服务器端的处理也很简单粗暴,对于未来leader上的事务日志都会当做提交来处理的,即都会被应用到内存树中。

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;同时目前ZooKeeper的原生客户端也没有进行重试,服务器端也没有对重试进行检查。这一部分到下一篇再详细探讨与raft的区别

4 未完待续

本文有很多细节,难免可能疏漏,还请指正。

4.1 问题

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;这里留个问题供大家思考下:

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;raft每次执行AppendEntries RPC的时候,都会带上当前leader的新term,来防止旧的leader的旧term来执行相关操作,而ZooKeeper的peerEpoch呢?达到防止旧leader的效果了吗?它的作用是干什么呢?


Suffering is the best teacher of life.

书山有路勤为径,学海无涯苦作舟。

欢迎关注微信公众号:【程序员写书】
程序员写书

喜欢宠物的朋友可以关注:【电巴克宠物Pets】
电巴克宠物

一起学习,一起进步。

-------------本文结束感谢您的阅读-------------