乐知付加密服务平台

如果你有资源, 平台可以帮你实现内容变现, 无需搭建知识付费服务平台。

点击访问官方网站 https://lezhifu.cc

扫码关注公众号 乐知付加密服务平台-微信公众号
Flink-sql-client提交sql脚本文件 | chenzuoli's blog

Flink-sql-client提交sql脚本文件

我们知道,sql-client.sh可以提供给我们一个sql交互界面,让我们没执行一个sql,就可以看到执行结果,也可以交互式查询表的结果。

其实,我们也可以通过sql-client提交sql脚本,我们来看下。

sqlclient

./bin/sql-client.sh -h 对应的帮助参数:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
(base) [chenzuoli@chenzuolis-MacBook /Volumes/chenzuoli/Data/docker_img/flink-1.12.1]$./bin/sql-client.sh -h
./sql-client [MODE] [OPTIONS]

The following options are available:

Mode "embedded" submits Flink jobs from the local machine.

Syntax: embedded [OPTIONS]
"embedded" mode options:
-d,--defaults <environment file> The environment properties with which
every new session is initialized.
Properties might be overwritten by
session properties.
-e,--environment <environment file> The environment properties to be
imported into the session. It might
overwrite default environment
properties.
-h,--help Show the help message with
descriptions of all options.
-hist,--history <History file path> The file which you want to save the
command history into. If not
specified, we will auto-generate one
under your user's home directory.
-j,--jar <JAR file> A JAR file to be imported into the
session. The file might contain
user-defined classes needed for the
execution of statements such as
functions, table sources, or sinks.
Can be used multiple times.
-l,--library <JAR directory> A JAR file directory with which every
new session is initialized. The files
might contain user-defined classes
needed for the execution of
statements such as functions, table
sources, or sinks. Can be used
multiple times.
-pyarch,--pyArchives <arg> Add python archive files for job. The
archive files will be extracted to
the working directory of python UDF
worker. Currently only zip-format is
supported. For each archive file, a
target directory be specified. If the
target directory name is specified,
the archive file will be extracted to
a name can directory with the
specified name. Otherwise, the
archive file will be extracted to a
directory with the same name of the
archive file. The files uploaded via
this option are accessible via
relative path. '#' could be used as
the separator of the archive file
path and the target directory name.
Comma (',') could be used as the
separator to specify multiple archive
files. This option can be used to
upload the virtual environment, the
data files used in Python UDF (e.g.:
--pyArchives
file:///tmp/py37.zip,file:///tmp/data
.zip#data --pyExecutable
py37.zip/py37/bin/python). The data
files could be accessed in Python
UDF, e.g.: f = open('data/data.txt',
'r').
-pyexec,--pyExecutable <arg> Specify the path of the python
interpreter used to execute the
python UDF worker (e.g.:
--pyExecutable
/usr/local/bin/python3). The python
UDF worker depends on Python 3.5+,
Apache Beam (version == 2.23.0), Pip
(version >= 7.1.0) and SetupTools
(version >= 37.0.0). Please ensure
that the specified environment meets
the above requirements.
-pyfs,--pyFiles <pythonFiles> Attach custom python files for job.
These files will be added to the
PYTHONPATH of both the local client
and the remote python UDF worker. The
standard python resource file
suffixes such as .py/.egg/.zip or
directory are all supported. Comma
(',') could be used as the separator
to specify multiple files (e.g.:
--pyFiles
file:///tmp/myresource.zip,hdfs:///$n
amenode_address/myresource2.zip).
-pyreq,--pyRequirements <arg> Specify a requirements.txt file which
defines the third-party dependencies.
These dependencies will be installed
and added to the PYTHONPATH of the
python UDF worker. A directory which
contains the installation packages of
these dependencies could be specified
optionally. Use '#' as the separator
if the optional parameter exists
(e.g.: --pyRequirements
file:///tmp/requirements.txt#file:///
tmp/cached_dir).
-s,--session <session identifier> The identifier for a session.
'default' is the default identifier.
-u,--update <SQL update statement> Experimental (for testing only!):
Instructs the SQL Client to
immediately execute the given update
statement after starting up. The
process is shut down after the
statement has been submitted to the
cluster and returns an appropriate
return code. Currently, this feature
is only supported for INSERT INTO
statements that declare the target
sink table.

其中第一个参数-d,可以指定一些环境上的参数配置。

flink

接下来,我们看看conf/sql-client-defaults.yaml文件,这个文件其实就是对应的配置文件。
创建测试用的数据文件:

1
2
3
4
5
6
7
8
mkdir sql_test
vim sql_test/book-store.csv

枪炮、病菌和钢铁,18,社会学
APP UI设计之道,20,设计
通证经济,22,经济学
区块链的真正商机,21,经济学

我们再来创建一个自己的配置文件,读取csv文件,然后select出来,新建文件conf/book-store.yaml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
vim conf/book-store.yaml

tables:
- name: BookStore
type: source-table
update-mode: append
connector:
type: filesystem
path: "/Users/zhaoqin/temp/202004/26/book-store.csv"
format:
type: csv
fields:
- name: BookName
type: VARCHAR
- name: BookAmount
type: INT
- name: BookCatalog
type: VARCHAR
line-delimiter: "\n"
comment-prefix: ","
schema:
- name: BookName
type: VARCHAR
- name: BookAmount
type: INT
- name: BookCatalog
type: VARCHAR
- name: MyBookView
type: view
query: "SELECT BookCatalog, SUM(BookAmount) AS Amount FROM BookStore GROUP BY BookCatalog"


execution:
planner: blink # optional: either 'blink' (default) or 'old'
type: streaming # required: execution mode either 'batch' or 'streaming'
result-mode: table # required: either 'table' or 'changelog'
max-table-result-rows: 1000000 # optional: maximum number of maintained rows in
# 'table' mode (1000000 by default, smaller 1 means unlimited)
time-characteristic: event-time # optional: 'processing-time' or 'event-time' (default)
parallelism: 1 # optional: Flink's parallelism (1 by default)
periodic-watermarks-interval: 200 # optional: interval for periodic watermarks (200 ms by default)
max-parallelism: 16 # optional: Flink's maximum parallelism (128 by default)
min-idle-state-retention: 0 # optional: table program's minimum idle state time
max-idle-state-retention: 0 # optional: table program's maximum idle state time

# (default database of the current catalog by default)
restart-strategy: # optional: restart strategy
type: fallback # "fallback" to global restart strategy by default

# Configuration options for adjusting and tuning table programs.

# A full list of options and their default values can be found
# on the dedicated "Configuration" page.
configuration:
table.optimizer.join-reorder-enabled: true
table.exec.spill-compression.enabled: true
table.exec.spill-compression.block-size: 128kb

# Properties that describe the cluster to which table programs are submitted to.

deployment:
response-timeout: 5000

通过指定配置文件的方式,来启动一个单独的session,执行相应的source-table和sink-table。
其中关于book-store.yaml配置文件,有几点需要注意:
a. tables.type等于source-table,表明这是数据源的配置信息;
b. tables.connector描述了详细的数据源信息,path是book-store.csv文件的完整路径,connector的type指定为filesystem,这跟我们写sql的时候指定的connector参数是一致的;
c. tables.format描述了文件内容,type为csv格式;
d. tables.schema描述了数据源表的表结构;
ed. type为view表示MyBookView是个视图(参考数据库的视图概念);

下面来看一下测试结果:

1
2
./bin/start-cluster.sh
./bin/sql-client.sh embedded -d conf/book-store.yaml

进入sql-client sql交互界面之后,可以看到环境已经配置好了,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Flink SQL> show tables;
BookStore
MyBookView

Flink SQL> desc BookStore;
+-------------+--------+------+-----+--------+-----------+
| name | type | null | key | extras | watermark |
+-------------+--------+------+-----+--------+-----------+
| BookName | STRING | true | | | |
| BookAmount | INT | true | | | |
| BookCatalog | STRING | true | | | |
+-------------+--------+------+-----+--------+-----------+
3 rows in set

Flink SQL> desc MyBookView
> ;
+-------------+--------+------+-----+--------+-----------+
| name | type | null | key | extras | watermark |
+-------------+--------+------+-----+--------+-----------+
| BookCatalog | STRING | true | | | |
| Amount | INT | true | | | |
+-------------+--------+------+-----+--------+-----------+
2 rows in set

可以看到两个表已经创建好了,我们可以看一下数据:

1
2
3
4
5
6
select * from MyBookView;

BookCatalog Amount
社会学 18
设计 20
经济学 43

对不对,ok了,你要是yaml文件中写有sink-table那么,直接就提交了一个flink job到flink集群了,是不是达到了提交flink sql脚本文件的效果了。

好了,今天就这样,因为这几天在倒腾公司数据平台组开发的一个 流数据平台,发现他们是通过sql-client,提交到k8s上的,这一个提交任务方式,着实让我感到意外。因为之前翻译过一篇官方提供的flink submit job的文章,里面提到了四种提交方式:

  1. local cluster
  2. application mode
  3. per job mode
  4. session mode

我以为只有这四种呢,其实仔细看,sql-client提交sql的方式类似于session的方式,在整个session启动过程中,你可以不听地执行sql语句,session关闭,则任务关闭。

ok,下次见。

flink, yyds.


书山有路勤为径,学海无涯苦作舟。

欢迎关注我的微信公众号,比较喜欢分享知识,也喜欢宠物,所以做了这2个公众号:
程序员写书

喜欢宠物的朋友可以关注:【电巴克宠物Pets】
电巴克宠物

一起学习,一起进步。

-------------本文结束感谢您的阅读-------------